Sample Functions of the Gaussian Process
نویسندگان
چکیده
منابع مشابه
Nonstationary Covariance Functions for Gaussian Process Regression
We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from f...
متن کاملGaussian Process Neurons Learn Stochastic Activation Functions
We propose stochastic, non-parametric activation functions that are fully learnable and individual to each neuron. Complexity and the risk of overfitting are controlled by placing a Gaussian process prior over these functions. The result is the Gaussian process neuron, a probabilistic unit that can be used as the basic building block for probabilistic graphical models that resemble the structur...
متن کاملthe effect of keeping reflective journals by language instructors on the process of reading comprehension among iranian high school students
خواندن ودرک مطلب از مهمترین مهارتها در یادگیری زبان خارجی محسوب می شود. این تحقیق تاثیر برگه های تامل برانگیز هدایت شده را در ارتقاع مهارت خواندن ودر ک مطلب در دانش اموزان دبیرستانی ایرانی بررسی می نماید. ازمجموع ?2 دانش آموز سال چهارم دبیرستان شهید رجایی شهرستان اسلامشهر¸ پس از اجرای آزمون استاندارد ((nelson 150a تعداد 39 دانش آموز که نمرات آنها یک سطح انحراف معیار بالاتر یا پایین تر ازمعدل قر...
the impact of portfolio assessment on iranian efl students essay writing: a process-oriented approach
this study was conducted to investigate the impact of portfolio assessment as a process-oriented assessment mechanism on iranian efl students’ english writing and its subskills of focus, elaboration, organization, conventions, and vocabulary. out of ninety juniors majoring in english literature and translation at the university of isfahan, sixty one of them who were at the same level of writing...
15 صفحه اولThe Variational Gaussian Process
Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1973
ISSN: 0091-1798
DOI: 10.1214/aop/1176997026